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Abstract: Disentangling the individual contributions from vegetation and soil in measured 29 

canopy reflectance is a grand challenge to the remote sensing and ecophysiology communities. 30 

Since Solar Induced chlorophyll Fluorescence (SIF) is uniquely emitted from vegetation and 31 

barely influenced by the soil background, it can be used to evaluate how well reflectance-based 32 

vegetation indices (VIs) can separate the vegetation and soil components. Due to the residual 33 

soil background contributions, Near-infrared (NIR) reflectance of vegetation (NIRv) and 34 

Difference Vegetation index (DVI) present offsets as compared to SIF (i.e., the value of NIRv 35 

or DVI is non-zero when SIF is zero) when compared to SIF. In this study, we proposed a 36 

simple framework for estimating the true NIR reflectance of vegetation from Hyperspectral 37 

measurements (NIRvH) with minimal soil impacts. NIRvH takes advantage of the spectral 38 

shape variations in the red-edge region to minimize the soil effects. We evaluated the capability 39 

of NIRvH, NIRv and DVI in isolating the true NIR reflectance of vegetation using the data 40 

from both the model-based simulations and Hyperspectral Plant imaging spectrometer 41 

(HyPlant) measurements. Benchmarked by simultaneously measured SIF, NIRvH has the 42 

smallest offset (0~0.037), as compared to an intermediate offset of 0.047~0.062 from NIRv, 43 

and the largest offset of 0.089~0.112 from DVI. The magnitude of the offset can vary with 44 

different soil reflectance spectra across spatio-temporal scales, which may lead to bias in the 45 

downstream NIRv-based photosynthesis estimates. NIRvH and SIF measurements from the 46 

same sensor platform avoided complications due to different geometry, footprint and time of 47 

observation across sensors when studying the radiative transfer of reflected photons and SIF. 48 

In addition, NIRvH was primarily determined by canopy structure rather than chlorophyll 49 

content and soil brightness. Our work showcases that NIRvH is promising for retrieving canopy 50 
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structure parameters (e.g., leaf area index and leaf inclination angle) and estimating 51 

fluorescence yield with current and forthcoming hyperspectral satellite measurements. 52 

Keywords: 53 

Solar-Induced chlorophyll Fluorescence (SIF), hyperspectral remote sensing, soil 54 

contamination, near-infrared reflectance of vegetation (NIRv), singular value decomposition 55 

(SVD), red edge 56 

 57 

1.Introduction 58 

Solar-induced chlorophyll Fluorescence (SIF) has been increasingly used to estimate the 59 

terrestrial gross primary productivity (GPP) (Frankenberg et al., 2011; Guanter et al., 2014; 60 

Ryu et al., 2019), because it originates from vegetation photosynthetic activity and is minimally 61 

influenced by soil background (Wang et al., 2019; Zeng et al., 2019). Despite these advantages, 62 

applications of SIF for GPP estimations are limited by a number of factors, including the 63 

relatively coarse spatial resolution, low revisiting frequency, low signal-noise ratio, and short 64 

history of measurements (since early 2000s) compared to the optical remote sensing (1972~) 65 

(Guanter et al., 2015). These limitations have been partly compensated with the exploitation of 66 

the newest satellites/sensors, e.g., the TROPOspheric Monitoring Instrument (TROPOMI) and 67 

Orbiting Carbon Observatory-2 (OCO-2), making a step change particularly in the spatial 68 

resolution. In the near future, the Fluorescence Explorer (FLEX) mission by the European 69 

Space Agency (Drusch et al., 2017) will provide SIF measurements at an unprecedented spatial 70 

resolution (300 m). Other limitations mentioned above will remain, including the short time 71 

series of SIF and high retrieval uncertainties.  72 

Meanwhile, substantial knowledge on the relationship between SIF and traditional optical 73 

remote sensing has been accumulated over the recent years and can be beneficial to compensate 74 
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limitations inherent to SIF. Badgley et al. (2017), for example, proposed the near-infrared (NIR) 75 

reflectance of vegetation (NIRv) as the product of normalized difference vegetation index 76 

(NDVI) and NIR reflectance (NIRv=NIR·NDVI), which has been demonstrated as a prominent 77 

indicator of SIF under low stress conditions (Turner et al., 2020). This suggests that NIRv can 78 

be considered as the “potential SIF” (Zeng et al., 2019) and can be either used as a complement 79 

of SIF to separate the physiological and structural components (Wang et al., 2020), or as a 80 

proxy of SIF when SIF measurement is unavailable (Wu et al., 2020; Peng et al., 2020). Since 81 

NIRv is entirely based on optical surface reflectance which is much easier to acquire, it 82 

addresses many of the aforementioned limitations of SIF. Further, the availability of a 83 

“potential SIF” proxy could open new opportunities to derive SIF yield (ΦF), which is a higher-84 

level metric with even more direct linkage with vegetation photosynthesis. To date, NIRv has 85 

been used in GPP estimates, view-angle correction of SIF, ΦF and crop yield retrievals 86 

(Badgley et al., 2019; Hao et al., 2021a, 2021b; Peng et al., 2020; Wang et al., 2020).  87 

However, a common limitation in traditional optical vegetation remote sensing is that 88 

observations are typically a mixture of solar radiation reflected by vegetation and the soil 89 

background. How to remove the soil contribution from observed remote sensing signals has 90 

been a challenge for optical remote sensing (Asner et al., 2002; Yang et al., 2019). As 91 

demonstrated by Badgley et al. (2017), NIRv can significantly reduce a major portion of the 92 

soil impact in the total NIR reflectance of the pixel. Zeng et al. (2019) explored the underlying 93 

physical mechanism of NIRv and found that NIRv was a good approximation of the NIR 94 

reflectance only contributed by the vegetation with a black soil background (NIRBS) and shared 95 

a similar canopy radiative transfer process as SIF (Zeng et al., 2019; Dechant et al., 2020). 96 

However, there remains residual impacts of changing soil background on NIRv (i.e., slightly 97 

violating the black-soil assumption of NIRBS), which will yield uncertainties that can propagate 98 

in the downstream NIRv applications. In fact, the varying offset (i.e., the value of a vegetation 99 
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index (VI) when SIF is zero) in the NIRv-SIF relationship due to different levels of soil 100 

contribution may complicate the universal application of NIRv as the “potential SIF” proxy, 101 

and thus its downstream applications such as estimating GPP or ΦF across spatiotemporal 102 

scales. 103 

The current formula of NIRv as NIR·NDVI can still be partially impacted by the soil 104 

background. In such a formula, NDVI serves as an adjusting factor of NIR. Ideally NDVI 105 

should range from zero (pure soil) to one (dense canopy), but in reality the soil NDVI is larger 106 

than zero, and NDVI for dense canopy is always smaller than one. Yang et al. (2020) proposed 107 

the Fluorescence Correction Vegetation Index (FCVI), which requires the NIR reflectance and 108 

the broadband visible reflectance covering the range of photosynthetically active radiation 109 

(PAR, 400~700 nm). The Difference Vegetation Index (DVI=NIR-Red; Richardson et al., 1977) 110 

was used as a proxy for FCVI (Joiner et al., 2020). DVI can also partially reduces the soil 111 

contribution due to the contrast spectra of soil and vegetation in the red-NIR region. However, 112 

DVI can still be affected by the soil background. Because soil reflectance generally increases 113 

from visible to NIR wavelengths (i.e., NIR reflectance > red reflectance), the soil DVI (=NIR-114 

Red) is typically larger than zero and can increase with the slope of the soil visible-NIR 115 

spectrum. The sensitivity of DVI to the soil spectrum shape might be reduced by using the 116 

weighted DVI (WDVI), which puts different weights on the red and NIR bands in order to 117 

adapt to the regional soil spectrum shape, if the soil spectrum shape could be acquired in 118 

advance (Richardson et al., 1977). NDVI can be rewritten as DVI/(NIR+Red). Considering the 119 

stronger variation of the denominator than the numerator, darker soil background results in 120 

higher NDVI values, while brighter soil background leads to lower NDVI values (Qi et al., 121 

1994; Huete et al., 2002). The increase of canopy reflectance with the wavelength is contributed 122 

by the increase of both the vegetation and soil reflectance contributions, and this effect is 123 

obvious at the red edge (e.g., 675~800 nm). With the support of current and forthcoming 124 
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hyperspectral missions, e.g., the TROPOMI covering 675~775 nm (Guanter et al., 2015), and 125 

the FLEX covering 500~780 nm (Drusch et al., 2016), it is expected to be promising to employ 126 

the red edge to better reduce the soil contribution than NIRv and DVI. For multi-spectral 127 

sensors, it is difficult to detect subtle shifts in the location and variation of the red edge 128 

reflectance driven by the chlorophyll content (Ollinger et al., 2011). 129 

Implementing an approach that allows NIRv to be less dependent on changing soil 130 

background will open new possibilities to mitigate current limitations in SIF and enable new 131 

applications. In this study, we explored features in leaf and soil spectra shapes at the red edge 132 

to define a strategy for separating vegetation and soil contributions from measured canopy 133 

reflectance. We implemented this strategy as a new derivative of the NIR reflectance of 134 

vegetation applicable to hyperspectral data (NIRvH) with substantially reduced sensitivity to 135 

soil background, and thoroughly evaluated the proposed NIRvH against the existing NIRv and 136 

DVI approaches.  137 

 138 

2.Theoretical foundation 139 

The total bidirectional reflectance factor BRFT at wavelength λ of a vegetated surface can 140 

be described as a sum of three components (Zeng et al., 2019): 141 

BRFT(λ)=BRFBS(λ)+BRFS(λ)+BRFM(λ)    (1) 142 

where BRFBS is the contribution of photons at wavelength λ reflected back by only the 143 

vegetation component over a black soil background (i.e., no soil reflection), BRFS is the single 144 

scattering contribution of photons at wavelength λ reflected back by the soil alone, and BRFM 145 

is the contribution of photons by multiple scattering between vegetation and soil. The goal of 146 

this study is thus to reduce the soil contribution from the total reflectance (BRFT). Whether the 147 

BRFM needs to be removed or not depends on the specific application case, and will be 148 
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discussed in Section 5.2. Based on the spectral invariants theory which considers the photon 149 

interactions with leaves and soil within the canopy in a successive order of scattering 150 

(Knyazikhin et al., 2013; Zeng et al., 2018), we can write BRFBS =ΣΣai,j·ρ(λ)i·τ(λ)j, 151 

BRFS=b·RS(λ), and BRFM=ΣΣΣci,j,k·ρ(λ)i·τ(λ)j·Rs(λ)k, where ρ(λ) and τ(λ) are the leaf 152 

reflectance and transmittance at wavelength λ, respectively, RS(λ) is the soil reflectance at 153 

wavelength λ, b is the bidirectional gap fraction, while ai,j and ci,j,k are the wavelength-154 

independent coefficients that are within the range of 0~1 and are only determined by the canopy 155 

structure and the multiple scattering orders i, j and k. To achieve a smaller offset (the value of 156 

VI when SIF or GPP is zero) in the SIF-VI (or GPP-VI) relationship, we need to reduce the 157 

soil contribution (BRFS and part of BRFM) from the total reflectance (BRFT). The distinct 158 

features of the leaf and soil spectrum at the red edge are the key to reduce the soil contribution 159 

in BRF. Below we will describe the features of the leaf spectrum and soil spectrum at the red 160 

edge in Section 2.1 and 2.2, respectively. Then we will describe two approaches for better 161 

approximating the true NIR reflectance of vegetation with hyperspectral data in Section 2.3. 162 

 163 

2.1 Leaf spectra exhibit strong absorption around 678 nm and a flat plateau in NIR 164 

The first step to decouple the soil and vegetation contributions in total reflectance is to 165 

identify the spectral regions where the leaf spectrum is invariant while the soil spectrum is 166 

changing. There is a strong absorption feature in the leaf spectrum in the red spectral domain 167 

(675~681 nm, Fig. 1c, d), as shown in the simulations with the PROSPECT-D model and 168 

measurements in the ANGERS Leaf Optical Properties Database (Fig. 1a, b) (Feret et al., 2008; 169 

Feret et al., 2017). This feature originates from a strong absorption by chlorophyll around 170 

675~681 nm peaking at 678 nm (Fig. S2a). 171 

Secondly, a relatively flat plateau of the leaf spectrum within the NIR range of 778~800 172 

nm (Figs. 1 and S1) is expected if brown pigments are not taken into consideration. The 173 
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variation of the chlorophyll content only shifts the starting and ending points of the red edge, 174 

but does not influence the reflectance in the NIR bands (Fig. 1). This is because in this 175 

wavelength region, there is little absorption of most leaf biochemical constituents, except the 176 

dry matter and brown pigments (Fig. S2). The brown pigments quantified by senescent material 177 

fraction can lead to positive slope in this wavelength region (Fig. S1b), while in practice flat 178 

plateaus are observed in the ANGERS Database (Feret et al., 2008), as shown in Fig. 1b. 179 

Overall, we find little change of the leaf spectrum in the NIR band in our modelling 180 

experiments due to the stable absorption of leaf biochemical constituents, while the brown 181 

pigments-induced uncertainties will be discussed in Section 3.1.   182 

Due to these features, the red band (675~681 nm, Fig. 1c, d) and NIR band (778~800 nm) 183 

where the leaf spectra are relatively stable and can be used as candidate spectral regions for 184 

unmixing vegetation and soil contributions to the canopy reflectance. In practice, the selection 185 

of spectral region depends on two data features: (1) the spectral resolution, e.g., the narrow red 186 

band (675~681 nm) must have high spectral resolution (<2 nm); (2) the sensor must cover 187 

either the red region (675~681 nm) or the NIR region (778~800 nm).  188 

 189 
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Fig. 1 Leaf reflectance spectra simulated by the PROSPECT-D model (a, c) and measured by 190 

INRA (National Institute for Agricultural Research) from the ANGERS Leaf Optical Properties 191 

Database (Feret et al., 2008) available at http://opticleaf.ipgp.fr/index.php?page=database (b, 192 

d). In the PROSPECT-D simulations, the chlorophyll content ranged from 20 μg cm-2 to 100 193 

μg cm-2 at a step of 20 μg cm-2. The carotenoid content was set to 20 μg cm-2, the dry matter 194 

content was 0.012 g cm-2, the equivalent water thickness was 0.009 cm and the leaf structure 195 

parameter N was 1.4. The spectral range of 675~800 nm in (a) and (b) represents the red edge 196 

which we are interested in for the NIRvH estimation. The colors in (b) and (d) only represent 197 

different leaf spectra. The spectral range of 675~681 nm in (c) and (d) represents the narrow 198 

region where the leaf spectra is relatively stable in the red band. 199 

 200 

2.2 Soil spectra exhibit a steady continuous change at the red edge 201 

The shape of the soil reflectance spectra is typically stable with a smooth increase around 202 

the red edge from 675 nm to 800 nm (Fig. 2). Because the leaf spectrum is generally flat in red 203 

band (675~681 nm) and NIR band (778~800 nm) (Fig. 1c,d), the increase of the canopy total 204 

reflectance in the two spectral regions (Fig. 3) is primarily due to the increase of the soil 205 

reflectance. When LAI increases from 0.5 to 5 m2 m-2, the contribution from soil single 206 

scattering (BRFS) to the canopy total reflectance (BRFT) may decrease, and thus the canopy 207 

spectrum becomes flatter, especially in the NIR bands. When LAI is large (e.g., 5 m2 m-2), 208 

BRFS may be minimal and neglectable, and thus BRFT behaves similarly to leaf spectrum and 209 

becomes flat in the red (675~681 nm) and NIR (778~800 nm) regions. Such features offer an 210 

opportunity to extract the profile of BRFS with measurements in the two spectral regions. 211 

In particular, we find that the red-band BRFT at the chlorophyll absorption peak (678 nm) 212 

is almost solely contributed by BRFS. For different LAIs, the vegetation contribution (BRFT - 213 

BRFS) at 678 nm does not exceed 0.02 (Fig. 3), which is even smaller than the leaf reflectance 214 

at 678 nm (generally <0.1 and mostly <0.05, Fig. 1d) considering the fractional vegetation 215 

cover, multiple scatter and strong reabsorption. Therefore, BRFT at 678 nm provides useful 216 

http://opticleaf.ipgp.fr/index.php?page=database


10 
 

information of soil reflectance. And once we know the soil spectrum profile or its slope, this 217 

information would be easy to extrapolate to other wavelengths and thereby estimate the soil 218 

contribution to BRFT. 219 

 220 

Fig. 2 Four soil spectrum samples with different brightness from the soil database in the 221 

SCOPE model (van der Tol et al., 2009). The spectral range of 675~800 nm in (a) and (b) 222 

represents the red edge which we are interested in for the NIRvH estimation. 223 

 224 

 225 

Fig. 3 Canopy-scale total reflectance (BRFT) with increasing LAI and the same soil background 226 

(dried soil, 4-Brightest in Fig. 2), simulated by the SCOPE model. The soil single scattering 227 

contribution (BRFS) is calculated by the product of the bidirectional gap fraction times the soil 228 

reflectance. The spectral range of 675~800 nm represents the red edge which we are interested 229 

in for the NIRvH estimation. 230 

 231 

2.3 Two approaches to develop the hyperspectral NIRv (NIRvH)  232 
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Based on the analysis above, we developed two simple and practical approaches (i.e., 233 

NIRvH1 and NIRvH2) for the NIRvH index without using any additional canopy structure 234 

parameters. In principle, BRFT can be written in another way as the sum of vegetation and soil 235 

contributions (BRFVeg and BRFSoil, respectively): 236 

BRFT(λ) = BRFVeg(λ)+BRFSoil(λ)    (2) 237 

NIRvH1 is a generalized approach that uses a singular value decomposition (SVD) method 238 

to estimate BRFSoil and a logistic function to fit the BRF from vegetation (BRFVeg) at the red 239 

edge (675~800 nm). Compared to Eq. (1), BRFSoil is the sum of BRFS and a part of BRFM, 240 

while BRFVeg includes BRFBS and the remaining portion of BRFM in BRFT. 241 

BRFSoil at the red edge can be estimated as  242 

        BRFSoil(λ)=Σꞵi·PCi(λ)                      (3) 243 

where PCi are the principal components extracted from the neighbouring pure soil pixels in the 244 

same image or from the soil spectral database, and ꞵi are the fitted coefficients. The shape of 245 

soil spectrum at the red edge within 675~800 nm is typically as simple as a linear line (Fig. 2). 246 

The first one or two PCs usually can explain more than 95% of the soil spectrum variance, and 247 

the complexity of the soil spectrum shape determines the number of PCs needed for the fitting. 248 

With the SVD method, we do not need to assume the shape of the soil spectrum is linear at the 249 

red edge.  250 

BRFVeg at the red edge can be approximated as a logistic function  251 

          BRFVeg(λ)=a/(1+b·exp(-t·(λ-λ0)))                      (4) 252 

where a, b and t are the fitted coefficients, and λ0 is 675 nm where the canopy spectrum begins 253 

to increase.  254 

Combining Eqs. X and Y gives 255 

BRFT(λ)= BRFVeg(λ)+ BRFSoil(λ)=Σꞵi·PCi(λ)+a/(1+b·exp(-t·(λ-λ0)))     (5) 256 
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Therefore, we can use the canopy reflectance to fit Eq. 5 to determine the coefficients (ꞵi, 257 

a, b, and t), and thus directly estimate NIRvH1 using Eq. 4 and the fitted a, b, t and λ in the 258 

NIR band (e.g., 778 nm).  259 

Considering the delicate atmospheric correction of high spectral resolution data, using the 260 

"atmospheric windows" is a more pragmatic strategy to avoid these errors. Therefore, we used 261 

the wavelengths at the “atmospheric windows” instead of the full spectral range in our NIRvH1 262 

approach. 263 

NIRvH2 was developed by assuming linear soil spectra at the red edge (Wang et al., 2017; 264 

Yang et al., 2019). Although this assumption might not be universally accurate, it could be 265 

reasonable for the most common cases. With this assumption, NIRvH2 can be written as 266 

NIRvH2= BRFT(NIR)-BRFT(R)-k·(λNIR-λR)           (6) 267 

where BRFT(R) and BRFT(NIR) are the reflectance in the red and NIR bands, respectively (Fig. 268 

4). According to the typical shapes of soil and vegetation spectrum shapes, λR is set to be 678 269 

nm, while λNIR could be within 778~800 nm for the best performance. BRFT(678 nm) is 270 

contributed mostly by BRFS(678 nm) (the product of the bidirectional gap fraction ‘b’ and the 271 

soil reflectance RS(678 nm)) in Eq. 1, and thus by the fitting with the baseline reflectance 272 

BRFT(678 nm) in Fig. 4, we do not need to know either ‘b’ or RS(678 nm), separately. The 273 

slope parameter, k, can be estimated by linear fitting several BRFT against wavelengths in either 274 

one of the two leaf spectral-invariant regions: red band (675~681 nm) or NIR band (778~800 275 

nm) as discussed in Section 2.1, depending on the data availability. Compared to NIRvH1, 276 

NIRvH2 is simpler and does not require the neighbouring pure soil pixels or a soil spectral 277 

database to extract the PCs. Hyperspectral reflectance is not necessary for NIRvH2 because 278 

the slope k can be derived from a few multispectral bands in the two spectral regions. However, 279 

the performance of NIRvH2 depends on linearity of the soil spectrum at the red edge, and thus 280 

has a narrower range of applications than NIRvH1. 281 
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 282 

 283 

Fig. 4 A diagram demonstrating the calculation of the NIRvH2 index from the canopy total 284 

reflectance by the baseline reflectance BRFT(R) at 678 nm, and by the slope k (Eq. 6) from 285 

either the red region (675~681 nm) or the NIR region (778~800 nm). 286 

 287 

3. Materials and methods 288 

3.1 Model-based evaluation with the SCOPE model 289 

The Soil Canopy Observation, Photochemistry and Energy (SCOPE) model version 1.70 290 

(van der Tol et al., 2009) was used to simulate canopy reflectance and SIF with various 291 

combinations of canopy structure, leaf property, sun-sensor geometry and soil spectrum (Table 292 

1), in order to test the performance of NIRvH1 and NIRvH2. Four soil spectra with different 293 

brightness levels from the soil database in the SCOPE model (Fig. 2) were used in the 294 

simulations. All the other parameters were kept as the default values in SCOPE v1.70. In total, 295 

20,736 different combinations were generated. The broadband incoming shortwave radiation 296 

(400-2500 nm) was set at 600 W m-2. The simulated reflectance covered 400~1000 nm with a 297 

sampling interval of 1 nm, and simulated SIF at the O2-A band (760 nm) was used for the 298 

analysis. NIRBS was obtained by replacing the soil with a black-body background in the model 299 

setup. We chose the central wavelengths of the Moderate Resolution Imaging 300 
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Spectroradiometer (MODIS) sensor at the red band (648 nm) and NIR band (858 nm) (Vermote 301 

et al., 1997) to calculate NIRv and DVI.  302 

In order to evaluate the practical performance of NIRvH1 and NIRvH2, we chose to use 303 

the spectral range of 675~775 nm to be identical to the spectral coverage of existing 304 

hyperspectral satellite sensors, e.g., TROPOMI. The four soil spectra in Fig. 3 were used in the 305 

SVD method for the NIRvH1 calculation. For calculating NIRvH2, we set λNIR=775 nm. The 306 

slope parameter k in Eq. 6 was estimated using the simulated red band (675~681 nm) canopy 307 

reflectance to be consistent with TROPOMI. 308 

We compared four simulated VIs (NIRvH1, NIRvH2, DVI and NIRv) to evaluate their 309 

performance in reducing the soil impacts. To highlight the conditions of sparse vegetation, we 310 

first examined the results where SIF was no more than 1 W m-2 um-1 sr-1 and all the VIs were 311 

no more than 0.3. Both SIF and NIRBS, which had little soil influence, were used as the 312 

benchmark to evaluate the soil impacts on the four VIs. The offsets (i.e., the value of a 313 

vegetation index when SIF (or NIRBS) is zero) in the VI-SIF (or VI-NIRBS) relationship, were 314 

used to indicate the impact of soil brightness on VIs. For example, if the linear fitting line 315 

between a VI and SIF or NIRBS goes through the origin point of coordinates (0, 0), the offset 316 

is zero and suggests promising performance of the VI in reducing the soil influence. In addition, 317 

the relative offset (RO) was also calculated as the ratio between the offset and the mean of the 318 

VI. Similar analyses were also conducted with the model simulations where NIRvH1 and 319 

NIRvH2 were larger than 0.3 for the evaluation over dense canopies. 320 

As suggested in several earlier studies (Zeng et al., 2019; Yang et al., 2020; Hao et al., 321 

2021a), pure vegetation reflectance has a similar sun-sensory geometry effects as SIF and thus 322 

could be used to correct the anisotropy of SIF. Therefore, a VI that can well approximate pure 323 

vegetation reflectance should demonstrate good performance on correcting the anisotropy of 324 

SIF observations at different sun-sensor geometries. With the setting of varied sun-sensor 325 
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geometry in our SCOPE simulations, we evaluated the four VIs for their ability of correcting 326 

the anisotropy of SIF in two approaches. One approach was to calculate the total emitted SIF 327 

by all leaves (SIFTotal) from top-of-canopy SIF (SIFTOC) with different sun-sensor geometries: 328 

SIFTotal = SIFTOC/fesc, and compared it with the true value provided by model simulation. 329 

SIFTotal can be estimated from SIFTOC obtained under a sun-sensor geometry by dividing SIFTOC 330 

by a photon escape ratio fesc = VI/(fPAR·w), where VI is one of the four abovementioned VIs 331 

under the same sun-sensor geometry of SIFTOC, fPAR is the fractional of absorbed 332 

photosynthetically active radiation (PAR) from SCOPE in this study, and w is the leaf single 333 

scattering albedo at 760 nm (Zeng et al., 2019; Dechant et al., 2020). The second approach was 334 

to normalize SIFTOC to the nadir viewing direction (SIFNadir), with the corresponding VIs at the 335 

same angle of SIFTOC (by VITOC) and nadir VIs (VINadir) (Zeng et al., 2019; Hao et al., 2021a, 336 

2021b): SIFNadir=SIFTOC*VINadir/VITOC. The calculated SIFNadir can be compared with the true 337 

value provided by model simulations to evaluate the anisotropy of VI in comparison to SIF. 338 

The first approach may have systematic biases due to different behaviours of SIF and VI over 339 

the bare soil, because VI may not be equal to zero when SIF was zero. The second approach 340 

highly depends on the anisotropy distribution of SIF and VI, while the soil impacts on VIs 341 

could vary with the sun-sensor geometry with different fractions of sunlit/shaded soil in view. 342 

 343 

Table 1. List of variables and their ranges used in SCOPE v1.70 simulations of canopy 344 

reflectance and fluorescence (Zeng et al., 2019), resulted in 20,736 combinations. Default 345 

values were used for all the other variables. 346 

  Variable Values 

Canopy Structure Leaf Area Index (LAI, m2 
m-2) 

[0.5, 1, 3, 5] 

Leaf Angle Distribution Spherical, Erectophile, Planophile 
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Leaf Property Leaf Chlorophyll Content 
(Cab, μg cm-2) 

[40, 60, 80] 

Dry Matter Content  
(Cm, g cm-2) 

[0, 0.025, 0.05] 

Brown Pigments (Senescent 
material fraction, Cs) 

[0, 0.3, 0.6, 0.9] 

Sun-sensor 
Geometry 

Solar Zenith Angle [30°, 50°] 

View Zenith Angle [0°, 30°, 50°] 

Relative Azimuth Angle [0°, 180°] 

Soil Background Soil Spectra Four soil spectra 

 347 

3.2 HyPlant airborne dataset 348 

We also used hyperspectral and SIF measurements from an airborne remote sensing 349 

experiment with the HyPlant sensor to evaluate NIRvH1 and NIRvH2. The HyPlant sensor 350 

(Specim, Finland) is an airborne imaging spectrometer for vegetation monitoring with two 351 

sensors operating in push-broom mode (Rascher et al., 2015; Siegmann et al., 2019). The 352 

fluorescence imager (FLUO) module of HyPlant acquires radiance at high spectral resolution 353 

(0.25 nm) in the spectral region of the two oxygen absorption bands (670~780 nm), enabling 354 

simultaneous acquisition of SIF and reflectance with consistent geometry. The DUAL module 355 

of HyPlant provides imageries covering the spectral range of 380~2500 nm with the spectral 356 

resolution at about 1.7 nm at the red edge. In this study, four HyPlant airborne imageries were 357 

acquired with the flight altitude of 600 m above the ground surface, including three regions of 358 

agricultural fields (Region A~C), and one region of complex land surfaces (Region D). The 359 

imageries were acquired on August 23rd, 2012 (Region A: 50°52’37.52”N/ 6°26’41.89”E, 360 

sugar beet), June 30th, 2015 (Region B: 50°52’33.42”N/ 6°26’10.83”E, potato, winter wheat 361 

and sugar beet), July 19th, 2016 (Region C: 50°52’43.95”N/ 6°26’11.79”E, sugar beet, potato 362 
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and maize), and August 23rd, 2012 (Region D: 50°54’39.10”N/ 6°26’41.89”E, forest with 363 

woody components, water body and urban areas), respectively (Fig. S3). 364 

The improved Fraunhofer Line Discrimination (iFLD) module was adopted to retrieve SIF 365 

at the O2–A band (760 nm) from the observed radiance (Damm et al., 2011). The HyPlant 366 

imageries were atmospherically corrected using the MODTRAN radiative transfer model to 367 

obtain the relevant atmospheric transfer functions and enable the calculation of surface 368 

reflectance (Berk et al., 2005). The spatial resolution for reflectance and SIF was originally at 369 

1 m but was aggregated to 5 m to reduce the noise and compensate the impact of a wide spatial-370 

spectral point spread function. For NIRvH1, we chose the same wavelength of TROPOMI 371 

covering 675~775m. Again, only the wavelengths at the atmospheric windows within 675~775 372 

nm of the HyPlant FLUO surface reflectance data were used for the NIRvH1 (cf. Section 2.3 373 

for a justification). The soil pixels for the SVD method in NIRvH1 were selected by a criterion 374 

which has a threshold value of 0.2 for NDVI at the same HyPlant imagery. For NIRvH2, we 375 

set λNIR=775 nm and extracted k in Eq. 6 with linear fitting of the total reflectance within the 376 

range of 675~681 nm or 778~800 nm. Because NIRBS cannot be directly acquired by the 377 

airborne data, we only used far-red SIF at 760 nm as the reference. NIRv and DVI were also 378 

included in the HyPlant analysis to compare with NIRvH1 and NIRvH2. Reflectance at 648 379 

nm (red) and 858 nm (NIR), which were identical to the central wavelengths of MODIS, were 380 

used to calculate NIRv and DVI.  381 

 382 

4. Results 383 

4.1 Evaluation by SCOPE simulations 384 

All the four VIs demonstrated strong linear relationships with SIF and NIRBS, and the 385 

coefficient of determination (R2) was no less than 0.79 (Fig. 5) by the SCOPE simulations at 386 
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different combinations of canopy structure, leaf property, sun-sensor geometry and soil optical 387 

properties in Table 1. NIRvH1 and NIRvH2 stood out and showed the strongest and similar 388 

correlations with SIF and NIRBS, with the highest R2 and lowest RMSE, as well as the smallest 389 

offset and RO. In contrast to the converged small offsets of NIRvH1 and NIRvH2, DVI and 390 

NIRv had various and larger offsets in the SIF-VI or NIRBS-VI relationships in response to the 391 

four soil spectra with different levels of brightness in the SCOPE simulations. ROs of DVI and 392 

NIRv were also higher (Fig. 5). In the SIF-VI relationship, ROs were 17.7% and 10.4% for 393 

DVI and NIRv, while they were 4.2% and 2.1% for NIRvH1 and NIRvH2, respectively. 394 

Similarly, in the NIRBS-VI relationship, ROs were 19.5% and 11.6% for DVI and NIRv, and 395 

were 4.8% and 4.6% for NIRvH1 and NIRvH2, respectively. 396 

Larger offsets were found for DVI and NIRv (Figs. 5~6) with brighter soil backgrounds, 397 

which result in steeper red-edge slopes in the TOC reflectance spectra (Fig. 2). The largest 398 

offset over the brightest soil in the SIF-VI relationship for DVI and NIRv could be as large as 399 

0.049 and 0.028, respectively, while the largest offset for NIRvH1 or NIRvH2 was generally 400 

less than 0.013 (Fig. 6a). The largest offset over the brightest soil in the NIRBS-VI relationship 401 

for NIRvH1 and NIRvH2 was 0.013 and 0.008, and was 0.029 and 0.050 for NIRv and DVI, 402 

respectively (Fig. 6b). Over dense canopies when all the four VIs were larger than 0.3, NIRvH1 403 

and NIRvH2 still performed better than DVI and NIRv in approximating NIRBS, with a slightly 404 

higher R2 and lower RMSE when compared to NIRBS (Fig. S4). 405 
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 406 

Fig. 5 Scatter plots between SIF at 760 nm or NIRBS and different VIs by SCOPE simulations 407 

at different combinations of canopy structure, leaf property, sun-sensor geometry and soil 408 

spectrum in Table 1. To highlight the condition of sparse vegetation, we first examined the 409 

results  where SIF was no more than 1 W m-2 um-1 sr-1 and all the four VIs were no more than 410 

0.3. Note there were four soil spectra in the simulation, which led to four different offsets for 411 

the SIF-VI or NIRBS-VI relationships for DVI and NIRv as in Fig. 6. The relative offset (RO) 412 

was estimated by the ratio of the offset and the mean of the corresponding VI. 413 

 414 

Fig. 6 Offsets in the relationship between SIF at 760 nm or NIRBS with different VIs (Fig. 4) 415 

over four different soil brightness by SCOPE simulations. The simulations were conducted 416 

with different combinations of canopy structure, leaf property, sun-sensor geometry and soil 417 

reflectance spectra in Table 1. 418 

 419 
All the four VIs demonstrated good performances in the SIF anisotropy correcting 420 

experiments with SCOPE, i.e., the R2s between the corrected and simulated data were no lower 421 

than 0.78 (Fig. 7). NIRvH1 and NIRvH2 had higher R2s and lower RMSEs than DVI and NIRv 422 

for both SIFTotal and SIFNadir. For sparse vegetation canopies (e.g., LAI=0.5 m2 m-2), using DVI 423 
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and NIRv may result in underestimated SIFTotal by over 30% and 10%, respectively (Fig. 8). 424 

This is due to the overestimations of  fesc by DVI and NIRv, caused by the residual soil effects. 425 

SIFNadir using DVI and NIRv were overestimated by about 20% and 10% at maximum, again 426 

due to the residual soil contributions that led to different anisotropic distributions between SIF 427 

and DVI or NIRv. The residual soil contributions to DVI or NIRv changed with the sun-sensor 428 

geometry, caused by different fractions of sunlit/shaded soil in view. In contrast, we found the 429 

relative error was less than 10% for both SIFTotal and SIFNadir over all the sun-sensor geometries 430 

if NIRvH1 or NIRvH2 were used. 431 

 432 

 433 

Fig. 7 Scatter plots between SIFTotal or SIFNadir at 760 nm normalized by different VIs and 434 

SCOPE references at different combinations of canopy structure, leaf property, sun-sensor 435 

geometry and soil spectrum in Table 1. 436 
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 437 

Fig. 8 Relative error of SIFTotal or SIFNadir normalized by different VIs over sparse canopies 438 

when compared to SCOPE references at different viewing geometries, with the solar zenith 439 

angle at 30°, the leaf area index at 0.5 m2 m-2, the same soil background (dried soil, 4-Brightest 440 

in Fig. 2), spherical leaf angle distribution, the chlorophyll content at 60 μg cm-2, the carotenoid 441 

content at 20 μg cm-2, the dry matter content at 0.025 g cm-2, the equivalent water thickness at 442 

0.009 cm, the senescent material fraction at 0.3, and the leaf structure parameter N at 1.4. The 443 

contour lines divide each plot into equal intervals, and the color from blue to red represents the 444 

relative error from negative to positive. 445 

 446 

4.2 Evaluation by airborne HyPlant dataset 447 

The performance of the NIRvH1 calculation on the spectral fitting by the SVD method and 448 

the logistic function at three spectra from the HyPlant imagery was displayed in Fig. 9. The 449 

displayed three spectra of soil or total reflectance were sampled at 20%, 50%, and 80% 450 

percentiles of the data (Fig. 9). The increase of HyPlant-measured soil reflectance was not 451 

strictly linear at the red edge (675~775 nm). The first PC by the SVD method explained 98% 452 

of the soil spectrum variance for the pure soil pixels at region A, and only the first PC was thus 453 

used in the fitting. The results show that the SVD-reconstructed soil reflectance agreed well 454 

with the HyPlant-measured soil reflectance (Fig. 9a). After the removal of the soil contribution 455 
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by the SVD method, the remaining HyPlant vegetation reflectance of the three pixels agreed 456 

well with the shape of the leaf spectrum, and can be well fitted by a logistic function (Fig. 9b). 457 

Overall, the HyPlant total reflectance of the three pixels with different soil brightness as shown 458 

in the red band (Fig. 9c), can be well fitted by the SVD method and the logistic function in the 459 

NIRvH1 calculation. 460 

 461 

Fig. 9 The performance of the fitting by the singular value decomposition (SVD) method and 462 

the logistic function in the NIRvH1 calculation at three spectra from the HyPlant fluorescence 463 

imager at region A in Fig. S3. (a) The HyPlant measured reflectance of three soil pixels 464 

representing the 20%, 50%, and 80% percentiles of the soil reflectance values, and the 465 

corresponding SVD reconstructed reflectance. (b) The extracted HyPlant vegetation 466 

reflectance (BRFBS) after the removal of the soil contribution by the SVD approach at three 467 

mixed pixels representing the 20%, 50%, and 80% percentiles of the total reflectance values, 468 

and the corresponding logistic function-fitted vegetation reflectance. (c) The HyPlant observed 469 

total reflectance (BRFT) at the three mixed pixels, and the corresponding fitted total reflectance 470 

by the SVD method and the logistic function in the NIRvH1 calculation. Note only the 471 

wavelengths in the atmospheric windows with high transmittance around 680 nm, 710 nm, 750 472 

nm and 775 nm were used. 473 

 474 

    Scatter plots in Fig. 10 show the comparison between HyPlant-measured SIF and different 475 

Vis. In the three agricultural field regions (region A~C), all the four VIs showed strong linear 476 

correlations with SIF (R2 > 0.73). Positive offsets were found for all the four VIs in the SIF-VI 477 

relationship over sparse vegetation canopies. DVI and NIRv had higher ROs at the levels of 478 

26.9%~37.1% and 16.3%~23.7%, respectively. In contrast, ROs for NIRvH1 and NIRvH2 479 
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were only 0.1%~10.5% and 3.2%~12.8%, respectively. NIRvH1 and NIRvH2 had the smallest 480 

offsets within 0~0.028 and 0.008~0.037, respectively. NIRvH1 performed slightly better than 481 

NIRvH2 because the shape of soil reflectance spectra might be not strictly linear (Fig. 10a). 482 

NIRv had an intermediate offset within 0.047~0.062, and DVI had the largest offsets ranged 483 

between 0.089 and 0.112, two to three folds higher than NIRvH1 and NIRvH2. In the region 484 

D with more complex land surfaces, NIRvH1 and NIRvH2 kept showing better performance 485 

than DVI and NIRv, with higher R2, lower RMSE, offset and ROs. ROs for NIRvH1 and 486 

NIRvH2 were only 4.1% and 0.4%, respectively, while for DVI and NIRv were as large as 487 

20.7% and 11.9%, respectively. Overall, Fig. 10 suggests that the traditional DVI and NIRv 488 

are not promising at removing soil impacts with non-zero offset in their linear regression line 489 

with SIF, which may be primarily due to the increasing shape of soil reflectance at the red edge. 490 

By contrast, the soil effect was largely reduced with the proposed NIRvH1 and NIRvH2. 491 

 492 
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Fig. 10 Scatter plots of SIF at 760 nm and different VIs for HyPlant imageries at four study 493 

regions on August 23rd, 2012, June 30th, 2015, July 19th, 2016 and August 23rd, 2012, 494 

respectively. Regions A~C were agricultural fields, while region D was over complex land 495 

surfaces composed of forest, water body and urban areas. The relative offset (RO) was 496 

estimated by the ratio of the offset to the mean value of the corresponding VI in the SIF-VI 497 

relationship. 498 

 499 

5. Discussion 500 

5.1 Towards better separation of soil and vegetation contributions in canopy reflectance 501 

by NIRvH 502 

To date, NIRv and DVI have been considered as effective approaches of minimizing soil 503 

impacts and widely used in measuring vegetation growing status, and this may be of particular 504 

concern when they are used to reduce structural effects inherent to SIF retrievals (Zeng et al., 505 

2019; Yang et al., 2020; Joiner et al., 2020). Here we found that they may have varying positive 506 

offsets when compared to SIF and BRFBS, i.e., positive values at bare soil condition. This is 507 

mainly caused by the increasing soil reflectance at the red edge (Figs. 5 and 9), and thus soil 508 

still partly contributes to the difference between NIR and red reflectance, which was not fully 509 

accounted in their mathematical formulas. Furthermore, different sensor settings may introduce 510 

an additional level of complexity due to sampling red and NIR reflectance at different spectral 511 

wavelengths (e.g., MODIS at 648 nm and 858 nm, TROPOMI at 675 nm and 775 nm for red 512 

and NIR central wavelength, respectively) which are associated with different soil reflectance.  513 

Sellers et al (1992) emphasized the importance of disentangling the individual contributions 514 

from vegetation and soil in the red and NIR, and that this was particularly challenging with 515 

multispectral data especially over sparse vegetation canopies. We made full use of the shape 516 

of the soil and leaf spectrum at the red edge covered by hyperspectral data, and developed the 517 

NIRvH1 and NIRvH2. Both indices show strong linear correlations with SIF and BRFBS (Figs. 518 
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5 and 10), and can be directly used for the angular correction of directional observed SIF with 519 

good performance (Figs. 7 and 8). These two indices are promising for improving recent studies 520 

with NIRv, especially over sparse vegetation canopies at agricultural, forest and urban 521 

ecosystems (Fig. 10). While the goals of reducing the soil contribution in BRF can also be 522 

achieved with a physically-based canopy radiative transfer model, it requires retrievals of soil 523 

and vegetation structural parameters (e.g., leaf area index and leaf angle distribution) and thus 524 

introduces additional complexity, and may become challenging over heterogeneous land 525 

surfaces which violate the assumption of the model. By contrast, NIRvH1 and NIRvH2 526 

completely avoid such additional complexity by taking the advantage of the features of soil and 527 

vegetation spectrum, and they show better performance than DVI and NIRv over sparse 528 

canopies (Fig. 5). NIRvH1 and NIRvH2 also performed better than DVI and NIRv over dense 529 

canopies when the soil has minimal impacts (Fig. S4), possibly due to that DVI (=NIR-Red) 530 

and NIRv (=NIR·NDVI) were not equal to NIR with the additional term of Red (≠0) and NDVI 531 

(≠1) in DVI and NIRv, respectively. 532 

Table 2 summarizes the major characteristics of the new (NIRvH1 and NIRVH2) and 533 

traditional vegetation indices (DVI and NIRv) discussed in this study. NIRvH1 has the 534 

advantage that no assumption on the spectral shape of background soil is required and thus is 535 

more flexible. However, NIRvH1 needs the spectral information of the nearby pure soil pixels 536 

or at least a soil spectral database to drive the SVD approach. In addition, hyperspectral data 537 

are required which also limits the applicability of NIRvH1 in practice. NIRvH2 is simple to 538 

use and does not need any other additional information such as the nearby pure soil pixels or a 539 

soil spectral database. NIRvH2 also does not necessarily require hyperspectral data, as long as 540 

the slope k in Eq. 6 can be derived from a few red and NIR bands by multispectral sensors 541 

based on the assumption of a linearly increasing soil reflectance at the red edge. This 542 

assumption may not always be true but is reasonable for most soil types (Wang et al. 2017; 543 
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Yang et al. 2019). In addition, both NIRvH1 and NIRvH2 need to use reflectance measurement 544 

at 678 nm, the central wavelength of the chlorophyll absorption peak (Fig. S2a) which is the 545 

least sensitive to chlorophyll content and has the local minimal reflectance in the red band (Fig. 546 

1). However, the central wavelength of the red band of many existing multispectral sensors is 547 

away from 678 nm (e.g., it is 648 nm for MODIS) in red. Cautions must be taken that NIRvH1 548 

and NIRvH2 calculated with a red band departing from 678 nm may not have the best 549 

performance on removing soil impacts because of red band’s sensitivity to the chlorophyll 550 

content (Fig. 1).  551 

Table 2  Major characteristics of the four vegetation indices: NIRvH1, NIRvH2, DVI and NIRv 552 

on soil impacts as candidates for NIRBS. 553 

Remote sensing 
indices 

Reduce the 
soil effect? 

Influenced by 
the increase of 
soil 
reflectance? 

Require 
hyperspectr
al data? 

Other characteristics 

NIRvH1 Yes No Yes Requires soil pixel or a soil 
spectral database for SVD; 
Narrow-band at 678 nm 
required 

NIRvH2 Yes No Not 
necessarily 

No additional information 
needed; Simple; Narrow-
band at 678 nm required 

DVI Partially Yes No Maximum offset on the 
SIF-VI relationship 

NIRv Partially Yes No Medium offset on the SIF-
VI relationship 

 554 

5.2 Uncertainties and requirements in NIRvH estimations 555 

Multiple scattering between the vegetation and soil, i.e., BRFM in Eq. 1, also contributes to 556 

the canopy total reflectance in both leaf spectral-invariant regions at 675~681 nm and 778~800 557 

nm. In this study, BRFM has been partially included in NIRvH (NIRvH1 and NIRvH2) by the 558 

curve fitting, enabling a better correlation between NIRvH and SIF or NIRBS than the widely-559 
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used NIRv (Fig. 5). However, the importance of including the multiple scattering contributions 560 

in NIRvH depends on the specific application scenarios. For example, if the research goal is to 561 

use NIRvH for estimating GPP, to normalize SIF and retrieve ΦF, or to correct SIF for view-562 

angle effects, BRFM should be included in NIRvH, since soil reflected photons can be 563 

reabsorbed by the canopy, and then excite fluorescence and trigger photosynthesis. When 564 

applying NIRvH for retrieving canopy structural parameters (e.g., LAI, leaf inclination angle 565 

and clumping index), BRFM should be excluded in the calculation of the NIRvH, because all 566 

the soil contributions, no matter from single or multiple scattering, belong to the noise signal 567 

for estimating canopy structural parameters. 568 

Leaf reflectance at 678 nm is small (usually <0.1 and mostly <0.05, Fig. 1) but a non-zero 569 

positive value, because non-photosynthetic biochemical constituents within the leaves, such as 570 

the dry matter and brown pigments, always scatter a small proportion of incident radiation at 571 

678 nm. NIRvH2 not only reduces the soil contribution from the canopy total reflectance, but 572 

also reduces the scattering by non-chlorophyll leaf constituents. In fact, all scattering 573 

contributions by non-chlorophyll components can be reduced from BRFT(NIR) by NIRvH. In 574 

principle, NIRvH is robust and flexible for various application scenarios. As long as the 575 

background spectra of non-chlorophyll components (e.g., soil, litter, impervious surfaces and 576 

water body) can be identified in nearby pixels (for NIRvH1), or the slope of the background 577 

spectra varies minimally in the range of 675~800 nm (for NIRvH2), NIRvH is applicable over 578 

either natural or urban ecosystems (Fig. S3). Note that NIRvH can only separate the NIR 579 

contribution by chlorophyll and non-chlorophyll components, while cannot distinguish the 580 

chlorophyll contribution from leaves, woody parts (e.g., branches, stems and bark) and 581 

understory (e.g., moss and lichen). This allows NIRvH and SIF have similar radiative transfer 582 

process and results in the strong correlation between NIRvH with SIF (Figs. 5 and 10), although 583 

differences and uncertainties could come from the contribution of brown pigments that cause 584 
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a slight positive slope in the NIR region of 778~800 nm and violates the assumption of flat 585 

canopy NIR reflectance (Fig. S1). 586 

We recommended using two leaf spectral-invariant regions in the red and NIR bands for 587 

calculating NIRvH. In fact, the blue band at 450~480 nm is another spectral-invariant region 588 

that is not sensitive to canopy structure variations and potentially useful for calculating NIRvH. 589 

However, this may be challenging to use the blue band to calculate NIRvH, particularly 590 

NIRvH2 for two reasons. First, it might not be reasonable to assume soil reflectance linearly  591 

increases over a large spectral region from blue to red edge, and thus does not meet the 592 

prerequisite of the NIRvH2 algorithm. Second, atmospheric correction at the blue band is more 593 

complicated due to aerosol scattering and remaining larger artefacts than the red and NIR bands 594 

(Vermote et al., 1997). However, the NIRvH algorithm can still be promising to reduce the soil 595 

impacts of other vegetation indices at the canopy scale, such as the Photochemical Reflectance 596 

Index (PRI) (Gamon et al., 1992) and Chlorophyll/Carotenoid Index (CCI) (Gamon et al., 597 

2016), which have typically been applied with airborne or ground-based measurements with 598 

limited atmospheric scattering impacts on the blue band. 599 

 600 

5.3 Potential applications of the hyperspectral-based NIRvH  601 

NIRvH could be useful to decouple the soil and vegetation contribution in mixed pixels for 602 

current and forthcoming hyperspectral missions. TROPOMI covers 675~775 nm (Guanter et 603 

al., 2015) but not the largest chlorophyll absorption wavelength at 778 nm. However, applying 604 

both of our NIRvH approaches within the TROPOMI’s spectral coverage range could still 605 

perform well, as indicated by SCOPE experiments (Figs. 6 and 9). The forthcoming FLEX 606 

mission covers a wider spectral range of 500~780 nm (Drusch et al., 2016). The new 607 

hyperspectral instrument German Aerospace Center (DLR) Earth Sensing Imaging 608 

Spectrometer (DESIS) onboard the International Space Station (ISS) covers the wavelength of 609 
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400~1000 nm with the spectral resolution of 2.5 nm (Krutz et al., 2019), which will be 610 

promising for further validating our NIRvH approaches especially by including the spectral-611 

invariant NIR region of 778~800 nm. However, similar to other VIs for reducing soil impacts 612 

such as NDGI (Yang et al. 2019), NIRvH needs inputs from at least two red or NIR 613 

wavelengths/bands. This suggests that NIRvH designed for hyperspectral sensors is not 614 

applicable for most existing multispectral sensors/satellites such as MODIS and Landsat-8. 615 

Nevertheless, the NIRvH2 framework may be applicable with Sentinel-2 measurements which 616 

have 2 bands in NIR regions to partially reduce the soil impacts, although both Sentinel-2 NIR 617 

bands are beyond 800 nm and could introduce additional uncertainties by extrapolating Eq. 6. 618 

The reduced sensitivity of the NIRvH for soil background compared to the NIRv and its 619 

strong linear correlation to SIF enables it to approximate “potential SIF”. This may open many 620 

important applications, including the normalization of SIF and obtaining canopy-scale SIF 621 

yield (ΦF). Zeng et al (2019) demonstrated that SIF and NIRv radiance (Baldocchi et al., 2020; 622 

Wu et al., 2020) were related through their joint dependence on canopy structure and sun-623 

sensor geometry. The residual between the two measurements (NIRv or NIRvH radiance and 624 

SIF) should be directly related to ΦF (Wang et al., 2020). Variations in ΦF relate to the 625 

differential partitioning of absorbed PAR between photochemical and non-photochemical 626 

processes at the photosystem level. While the difference in performance between NIRvH and 627 

NIRv might be minor, small uncertainties could propagate directly into larger errors in ΦF. 628 

When combined with high-frequency SIF and eddy covariance measurements, NIRvH can be 629 

used to infer plant responses to environmental changes and stresses such as drought and thus 630 

improve our mechanistic understanding of the underlying physiological and ecological 631 

processes. Furthermore, since SIF measurements are usually sparse and coarse, NIRvH, as the 632 

“potential SIF”, is a good candidate as the reference for estimating SIF at a higher spatio-633 

temporal resolution. This would also allow us to look back in time and possibly extend SIF 634 



30 
 

time series to the past when suited hyperspectral data (e.g., Hyperion) or applicable multi-635 

spectral data were available.  636 

Note that in addition to NIRv and DVI, some other vegetation indices have been proposed 637 

to reduce the soil impacts, such as the soil-adjusted vegetation index (SAVI) (Huete et al., 638 

1988), enhanced vegetation index (EVI) (Huete et al., 2002), plant phenology index (PPI) (Jin 639 

and Eklundh, 2014), normalized difference phenology index (NDPI) (Wang et al., 2017) and 640 

normalized difference greenness index (NDGI) (Yang et al., 2019). They are widely used in 641 

the time-series analysis of phenology, but it is difficult to link their absolute magnitudes with 642 

the photon escape ratio (fesc) of SIF, and thus they cannot be directly used to calculate the total 643 

emitted SIF by directional observed SIF. Thus we mainly focus on the improvement of NIRv 644 

and DVI with hyperspectral dataset as a proxy of “potential SIF”. 645 

 646 

6. Conclusions 647 

Our study demonstrates a considerable dependence on the widely used NIRv and DVI for 648 

soil background contributions that translate into uncertainties of downstream applications such 649 

as estimates of GPP or the retrieval of ΦF. We showed that a rigorous exploitation of spectral 650 

invariant regions in the red and NIR enables the design of new VIs (NIRvH1 and NIRvH2) that 651 

show substantially reduced sensitivity for soil background contributions and even enables 652 

decoupling the combined contributions from vegetation and soil. We recommend using 653 

hyperspectral data for the NIRvH retrieval since such data enable a more robust usage of 654 

spectral invariant wavelength regions to estimate the spectral shape of soil background 655 

reflectance and eventually compensate this contribution. The newly designed NIRvH can be 656 

considered as a robust proxy of “potential SIF” and enables various applications to contribute 657 

to ecological research. We suggest evaluating the potential of NIRvH to directly approximate 658 

GPP, to normalize SIF retrievals with structural effects and illumination effects for retrieval of 659 
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ΦF. The NIRvH also holds potential to fill gaps in sparse spatio-temporal sampling of actual 660 

SIF and could even be exploited to extend available SIF time series to the past. These fields of 661 

applications are hypothetical, and we recommend further detailed experiments to exploit these 662 

possibly highly interesting application fields. 663 

Acknowledgement 664 

This research was supported by the National Aeronautics and Space Administration (NASA) 665 

through Remote Sensing Theory and Arctic Boreal Vulnerability Experiment (ABoVE) grants 666 

80NSSC21K0568 and NNH18ZDA001N granted to Min Chen. Y. R. was supported by 667 

National Research Foundation of Korea (NRF-2019R1A2C2084626). Airborne acquisition 668 

and data analysis were financed by the European Space Agency (ESA) in the frame of the 669 

HyFLEX campaign (ESA contract No. 4000107143/12/NL/FF/If) and the Photoproxy 670 

campaign (ESA contract No. 4000125731/19/NL/LF). This work was partially funded by the 671 

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s 672 

Excellence Strategy – EXC 2070 – 390732324. 673 

 674 

References 675 

Alonso, L., Gómez-Chova, L., Vila-Francés, J., Amorós-López, J., Guanter, L., Calpe, J.,  676 

Moreno, J. 2008. Improved Fraunhofer Line Discrimination method for vegetation 677 

fluorescence quantification. IEEE Geoscience and Remote Sensing Letters, 5, 620-624. 678 

Asner, G. P., Heidebrecht, K. B. 2002. Spectral unmixing of vegetation, soil and dry carbon 679 

cover in arid regions: comparing multispectral and hyperspectral observations. 680 

International Journal of Remote Sensing, 23(19), 3939-3958. 681 

Badgley, G., Field, C.B., Berry, J.A. 2017. Canopy near-infrared reflectance and terrestrial 682 

photosynthesis. Science Advances, 3, e1602244. 683 



32 
 

Badgley, G., Anderegg, L. D., Berry, J. A., Field, C. B. 2019. Terrestrial gross primary 684 

production: Using NIRv to scale from site to globe. Global change biology, 25(11), 3731-685 

3740. 686 

Baldocchi, D. D., Ryu, Y., Dechant, B., Eichelmann, E., Hemes, K., Ma, S., ... Verfaillie, J. 687 

2020. Outgoing Near Infrared Radiation from Vegetation Scales with Canopy 688 

Photosynthesis Across a Spectrum of Function, Structure, Physiological Capacity and 689 

Weather. Journal of Geophysical Research: Biogeosciences, e2019JG005534. 690 

Berk, A., Anderson, G. P., Acharya, P. K., Bernstein, L. S., Muratov, L., Lee, J., ... Lockwood, 691 

R. B. 2005, June. MODTRAN 5: a reformulated atmospheric band model with auxiliary 692 

species and practical multiple scattering options: update. In Algorithms and technologies 693 

for multispectral, hyperspectral, and ultraspectral imagery XI (Vol. 5806, pp. 662-667). 694 

International Society for Optics and Photonics. 695 

Damm, A., Erler, A., Hillen, W., Meroni, M., Schaepman, M. E., Verhoef, W., Rascher, U. 696 

2011. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy 697 

of sun-induced chlorophyll fluorescence. Remote Sensing of Environment, 115(8), 1882-698 

1892. 699 

Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y., ... Li, J. 2020. Canopy 700 

structure explains the relationship between photosynthesis and sun-induced chlorophyll 701 

fluorescence in crops. Remote Sensing of Environment, 241, 111733. 702 

Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y., Huth, A., ... Nedbal, L. 2016. 703 

The fluorescence explorer mission concept—ESA’s earth explorer 8. IEEE Transactions 704 

on Geoscience and Remote Sensing, 55(3), 1273-1284. 705 

Féret, J.-B., Gitelson, A., Noble, S., Jacquemoud, S. 2017. PROSPECT-D: towards modeling 706 

leaf optical properties through a complete lifecycle. Remote Sensing of Environment, 193, 707 

204-215 708 



33 
 

Feret, J.-B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P., Ustin, S.L., Le 709 

Maire, G., Jacquemoud, S. 2008. PROSPECT-4 and 5: Advances in the leaf optical 710 

properties model separating photosynthetic pigments. Remote Sensing of Environment, 711 

112, 3030-3043 712 

Gamon, J. A., Penuelas, J., Field, C. B. 1992. A narrow-waveband spectral index that tracks 713 

diurnal changes in photosynthetic efficiency. Remote Sensing of environment, 41(1), 35-714 

44. 715 

Gamon, J. A., Huemmrich, K. F., Wong, C. Y., Ensminger, I., Garrity, S., Hollinger, D. Y., ... 716 

Peñuelas, J. 2016. A remotely sensed pigment index reveals photosynthetic phenology in 717 

evergreen conifers. Proceedings of the National Academy of Sciences, 113(46), 13087-718 

13092. 719 

Guanter, L., Aben, I., Tol, P., Krijger, J., Hollstein, A., Köhler, P., Damm, A., Joiner, J., 720 

Frankenberg, C., Landgraf, J. 2015. Potential of the TROPOspheric Monitoring 721 

Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial 722 

chlorophyll fluorescence. Atmospheric Measurement Techniques, 8, 1337-1352. 723 

Hao, D., Zeng, Y., Qiu, H., Biriukova, K., Celesti, M., Migliavacca, M., Rossini, M., Asrar, G.,  724 

Chen, M. 2021a. Practical approaches for normalizing directional solar-induced 725 

fluorescence to a standard viewing geometry. Remote Sensing of Environment, 255, 726 

112171. 727 

Hao, D., Asrar, G.R., Zeng, Y., Yang, X., Li, X., Xiao, J., Guan, K., Wen, J., Xiao, Q., Berry, 728 

J.A., & Chen, M. 2021b. Potential of hotspot solar-induced chlorophyll fluorescence for 729 

better tracking terrestrial photosynthesis. Global Change Biology, 27, 2144-2158 730 

 731 

Huete, A. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 732 

Remote Sensing of Environment, 25, 295-309. 733 



34 
 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G. 2002. Overview of 734 

the radiometric and biophysical performance of the MODIS vegetation indices. Remote 735 

Sensing of Environment, 83, 195-213. 736 

Jin, H., Eklundh, L. 2014. A physically based vegetation index for improved monitoring of 737 

plant phenology. Remote Sensing of Environment, 152, 512-525. 738 

Joiner, J., Yoshida, Y., Köehler, P., Campbell, P., Frankenberg, C., van der Tol, C., ... Sun, Y. 739 

2020. Systematic Orbital Geometry-Dependent Variations in Satellite Solar-Induced 740 

Fluorescence (SIF) Retrievals. Remote Sensing, 12(15), 2346. 741 

Köhler, P., Guanter, L., Joiner, J. 2015. A linear method for the retrieval of sun-induced 742 

chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmospheric 743 

Measurement Techniques, 8(6), 2589-2608. 744 

Knyazikhin, Y., Schull, M. A., Stenberg, P., Mõttus, M., Rautiainen, M., Yang, Y., ... Disney, 745 

M. I. 2013. Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the 746 

National Academy of Sciences, 110(3), E185-E192. 747 

Krutz, D., Müller, R., Knodt, U., Günther, B., Walter, I., Sebastian, I., ... Venus, H. 2019. The 748 

instrument design of the DLR earth sensing imaging spectrometer (DESIS). Sensors, 749 

19(7), 1622. 750 

Liu, X., Guanter, L., Liu, L., Damm, A., Malenovský, Z., Rascher, U., ... Gastellu-Etchegorry, 751 

J. P. 2019. Downscaling of solar-induced chlorophyll fluorescence from canopy level to 752 

photosystem level using a random forest model. Remote sensing of environment, 231, 753 

110772. 754 

Ollinger, S. V. 2011. Sources of variability in canopy reflectance and the convergent properties 755 

of plants. New Phytologist, 189(2), 375-394. 756 

Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted 757 

vegetation index. Remote Sens. Environ. 480 (2), 119–126. 758 



35 
 

Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., Damm, A., Drusch, 759 

M., Guanter, L., Hanus, J. 2015. Sun‐induced fluorescence–a new probe of photosynthesis: 760 

First maps from the imaging spectrometer HyPlant. Global Change Biology, 21, 4673-761 

4684. 762 

Peng, B., Guan, K., Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., ... Köhler, P. 2020. 763 

Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop 764 

yield prediction. International Journal of Applied Earth Observation and Geoinformation, 765 

90, 102126. 766 

Richardson, A.J., Wiegand, C. 1977. Distinguishing vegetation from soil background 767 

information. Photogrammetric Engineering and Remote Sensing, 43, 1541-1552. 768 

Ryu, Y., Berry, J.A., Baldocchi, D.D. 2019. What is global photosynthesis? History, 769 

uncertainties and opportunities. Remote Sensing of Environment, 223, 95-114. 770 

Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., Hall, F. G. 1992. Canopy reflectance, 771 

photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new 772 

canopy integration scheme. Remote sensing of environment, 42(3), 187-216. 773 

Siegmann, B., Alonso, L., Celesti, M., Cogliati, S., Colombo, R., Damm, A., ... Kraska, T. 774 

2019. The high-performance airborne imaging spectrometer HyPlant—From raw images 775 

to top-of-canopy reflectance and fluorescence products: Introduction of an automatized 776 

processing chain. Remote Sensing, 11(23), 2760. 777 

Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., Cohen, R. C. 2020. A double 778 

peak in the seasonality of California's photosynthesis as observed from space. 779 

Biogeosciences, 17(2), 405-422. 780 

van der Tol, C., Berry, J., Campbell, P., Rascher, U. 2014. Models of fluorescence and 781 

photosynthesis for interpreting measurements of solar‐induced chlorophyll fluorescence. 782 

Journal of Geophysical Research: Biogeosciences, 119, 2312-2327. 783 



36 
 

van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z. 2009. An integrated model 784 

of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy 785 

balance. Biogeosciences, 6, 3109-3129. 786 

Vermote, E. F., El Saleous, N., Justice, C. O., Kaufman, Y. J., Privette, J. L., Remer, L., ... 787 

Tanre, D. 1997. Atmospheric correction of visible to middle‐infrared EOS‐MODIS data 788 

over land surfaces: Background, operational algorithm and validation. Journal of 789 

Geophysical Research: Atmospheres, 102(D14), 17131-17141. 790 

Wang, C., Chen, J., Wu, J., Tang, Y., Shi, P., Black, T.A., Zhu, K. 2017. A snow-free 791 

vegetation index for improved monitoring of vegetation spring green-up date in deciduous 792 

ecosystems. Remote Sensing of Environment, 196, 1-12. 793 

Wang, C., Guan, K., Peng, B., Chen, M., Jiang, C., Zeng, Y., ... Frankenberg, C. 2020. Satellite 794 

footprint data from OCO-2 and TROPOMI reveal significant spatio-temporal and inter-795 

vegetation type variabilities of solar-induced fluorescence yield in the US Midwest. 796 

Remote Sensing of Environment, 241, 111728. 797 

Wang, S., Ju, W., Peñuelas, J., Cescatti, A., Zhou, Y., Fu, Y., ... Zhang, Y. 2019. Urban− rural 798 

gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic 799 

seasons. Nature Ecology Evolution, 3(7), 1076-1085. 800 

Wu, G., Guan, K., Jiang, C., Peng, B., Kimm, H., Chen, M., ... Moore, C. E. 2020. Radiance-801 

based NIRv as a proxy for GPP of corn and soybean. Environmental Research Letters, 802 

15(3), 034009. 803 

Yang, W., Kobayashi, H., Wang, C., Shen, M., Chen, J., Matsushita, B., Tang, Y., Kim, Y., 804 

Bret-Harte, M.S., Zona, D. 2019. A semi-analytical snow-free vegetation index for 805 

improving estimation of plant phenology in tundra and grassland ecosystems. Remote 806 

Sensing of Environment, 228, 31-44. 807 



37 
 

Yang, P., van der Tol, C., Campbell, P. K., Middleton, E. M. 2020. Fluorescence Correction 808 

Vegetation Index (FCVI): A physically based reflectance index to separate physiological 809 

and non-physiological information in far-red sun-induced chlorophyll fluorescence. 810 

Remote sensing of environment, 240, 111676. 811 

Zeng, Y., Xu, B., Yin, G., Wu, S., Hu, G., Yan, K., ... Li, J. 2018. Spectral invariant provides 812 

a practical modeling approach for future biophysical variable estimations. Remote 813 

Sensing, 10(10), 1508. 814 

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., Berry, J. A. 2019. A practical approach 815 

for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. 816 

Remote Sensing of Environment, 232, 111209. 817 

Zeng, Y., Badgley, G., Chen, M., Li, J., Anderegg, L. D., Kornfeld, A., ... Berry, J. A. 2020. A 818 

radiative transfer model for solar induced fluorescence using spectral invariants theory. 819 

Remote Sensing of Environment, 240, 111678. 820 

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., ... Huete, A. 821 

2003. Monitoring vegetation phenology using MODIS. Remote sensing of environment, 822 

84(3), 471-475. 823 

  824 



38 
 

Supplementary Information 825 

 826 

Fig. S1 The leaf reflectance spectra simulated by the PROSPECT-D model with different dry 827 

matter contents (a) and senescent material fractions (b). Here, the chlorophyll content is 60 828 

μg cm-2, the carotenoid content is 20 μg cm-2, the equivalent water thickness is 0.009 cm and 829 

the leaf structure parameter N is 1.4. 830 

 831 

Fig. S2 Specific absorption coefficients of leaf spectrum for chlorophyll, carotenoid, 832 

anthocyanins and brown pigments (a), and for water and dry matter (b) from the recent version 833 

of PROSPECT-D model (Féret et al. 2017) with the spectral range of 675~800 nm at the red 834 

edge which we are interested in for the NIRvH estimation. 835 
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 836 

Fig. S3 The four study regions with HyPlant imageries acquired on August 23rd, 2012 (Region 837 

A: 50°52’37.52”N/ 6°26’41.89”E, 2315 m×595 m), June 30th, 2015 (Region B: 838 

50°52’33.42”N/ 6°26’10.83”E, 2115 m×1550 m), July 19th, 2016 (Region C: 50°52’43.95”N/ 839 

6°26’11.79”E, 1265 m×1115 m), and August 23rd, 2012 (Region D: 50°54’39.10”N/ 840 

6°26’41.89”E, 1950 m×455 m), respectively. 841 

 842 

 843 

Fig. S4 Scatter plots between NIRBS and different VIs by SCOPE simulations over dense 844 

canopies at different combinations of canopy structure, leaf property, sun-sensor geometry 845 

and soil spectrum in Table 1. To highlight the condition of dense vegetation, we examined 846 

the results where all the VIs were no less than 0.3. 847 

 848 


	Estimating near-infrared reflectance of vegetation from hyperspectral data
	Abstract: Disentangling the individual contributions from vegetation and soil in measured canopy reflectance is a grand challenge to the remote sensing and ecophysiology communities. Since Solar Induced chlorophyll Fluorescence (SIF) is uniquely emitt...
	Keywords:
	2.Theoretical foundation
	2.1 Leaf spectra exhibit strong absorption around 678 nm and a flat plateau in NIR
	2.2 Soil spectra exhibit a steady continuous change at the red edge
	2.3 Two approaches to develop the hyperspectral NIRv (NIRvH)

	3. Materials and methods
	3.1 Model-based evaluation with the SCOPE model
	3.2 HyPlant airborne dataset

	4. Results
	4.1 Evaluation by SCOPE simulations
	4.2 Evaluation by airborne HyPlant dataset

	5. Discussion
	5.1 Towards better separation of soil and vegetation contributions in canopy reflectance by NIRvH
	5.2 Uncertainties and requirements in NIRvH estimations
	5.3 Potential applications of the hyperspectral-based NIRvH

	6. Conclusions
	Acknowledgement
	References
	Supplementary Information

